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Abstract. In this paper, we introduce a generic hashing-based approach.
It aims to facilitate sketch-based retrieval on largedatasets of visual shapes.
Unlike previous methods where visual descriptors are extracted from over-
lapping grids, a content-aware selection scheme is proposed to generate
candidate patches instead. Meanwhile, the saliency of each patch is effi-
ciently estimated. Locality-sensitive hashing (LSH) is employed to inte-
grate and capture both the content and saliency of patches, as well as the
spatial information of visual shapes. Furthermore, hash codes are indexed
so that a query can be processed in sub-linear time. Experiments on three
standard datasets in terms of hand drawn shapes, images and 3D models
demonstrate the superiority of our approach.
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1 Introduction

Using sketch as input to retrieve visual information, such as hand drawn shapes,
images and 3D models, has attracted a lot of research interests in recent years. A
sketch is regarded as a collection of hand drawn strokes representing the contour
or skeleton of an object, while detailed appearance information are lost. As a re-
sult, sketch-based retrieval algorithms are usually quite different from traditional
image retrieval systems. One research direction for sketch-based retrieval aims
to produce sketch-like edge maps from images or 3D models. Such works focus
on removing edge noises such as background clutters in an image [10,20,21] or
selecting suitable viewpoints for 3D models [8]. In this paper, we try to answer
another question: How to extract and compare features carried by a sketch (or
a sketch-like edge map) in a proper way? Therefore, in the following we briefly
discuss previous works from the two viewpoints of interest in this paper: the
ways to extract sketch features and methods to measure feature similarities.

Recently, segmentation-based methods [9,11,12] are proved effective for sketch
retrieval and recognition systems with line drawings. Stroke segmentation is
usually involved to lower the computational complexity. Topology/geometry at-
tributes are then calculated from the extracted segments. However, an accurate
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Fig. 1. Example results of our approach on the Magic Sketch Database [11] (top), TU
Berlin Benchmark [7] (middle) and PSB Dataset [8] (bottom)

stroke segmentation is very hard to achieve. Especially, for natural images and
3D models where usually a lot of noises exist in their edge maps, there is almost
no perfect segmentation methods. This limits segmentation-based methods un-
suitable for generic sketch-based retrieval tasks.

Other works [2,7,8,14,21] originates from image retrieval. A sketch is divided
into patches and visual descriptors are then extracted. Overlapping grids [2] or
dense windows [14] are usually applied to describe the distribution of features
over the whole shape. This is suitable for an image filled with details as colors
and textures, but inappropriate for sparse edge maps, e.g., a sketch with a few
strokes. In such cases, most of the content of a sketch is gathered into several
salient patches while other patches are left almost empty. Due to this imbalance,
it is really ineffective and even harmful when these empty patches are used for
similarity computation, especially, when they are binarized before hashing.

Another issue in patch-based methods is that the similarity measurement
for sketches is weak. As sketches are hand drawn artifacts with various line
styles to represent objects other than colors and textures, they are different
from images in two points: large intra-class differences (because of painters’
subjective understanding) and small inter-class differences (due to the loss of
visual information like colors and textures). Similar sketches may still have a lot
of different patches. Therefore, the common concept (images are similar when
most patches are similar) used in image retrieval and adopted by current patch-
based methods is too strict and thus ineffective.

In this paper, we present a generic, content-aware sketch-based retrieval frame-
work that overcomes the above issues in current patch-based methods by taking
the sketch content distribution into consideration. Fig.1 shows some results of
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Fig. 2. Example of window selection. (a) input sketch; (b) an initial n×n grid andm×m
uniformly sampled seeds; (c) the first δw(x, y, 1) (magenta) and second δw(x, y, 2)
(green) rims of windows for seed (x, y). The ith δw(x, y, i) is added to w(x, y) iteratively.

our sketch-based retrieval on hand drawn shapes, images and 3D models. First, a
window1 selection scheme with regard to sketch content distribution is proposed
to generate candidate patches. It ensures that features carried by a sketch are uni-
formly distributed in all patches. Second, we refine the common image retrieval
concept in a more reasonable way: sketches are similar when their most salient
patches are similar. Thus we introduce a salient window detection algorithm,
which helps to compute shape similarity. We then follow hash-based retrieval ap-
proaches [2,16,23] and employ a locality-sensitive hashing (LSH) method, which
combines the above cues together with structural information. To be applica-
ble to large datasets, indexing is performed as well to enable sub-linear runtime
performance. The rest of our paper is organized as follows. Sec. 2 presents the
detailed algorithm, and our whole retrieval framework is introduced in Sec. 3.
Finally, all experimental results are shown in Sec. 4.

2 Proposed Algorithm

Our proposed approach consists of three components: selecting candidate win-
dows with regard to sketch content, detecting salient windows adaptively using
key points, and combining these two features together with spatial cues into
hash codes. Detailed algorithms of each step are described as follows.

2.1 Content-Aware Window Selection

Given a sketch, we begin by dividing it into a n× n grid. Then m×m seeds are
uniformly sampled at the crossing points of the patches, as shown in Fig. 2(b).
We define a set of windows δw(x, y, i) as the ith-rim windows around the seed
(x, y), as shown in Fig. 2(c). In order to generate a proper window, δw(x, y, i)
should be added to w(x, y) iteratively until certain constraints are satisfied or
w(x, y) becomes invalid, e.g., it flows over the whole sketch or it is larger than a
quarter of the sketch. We present two effective constraints as follows.

1 We use “patches” and “windows” interchangeably in this paper.
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Algorithm 1. Selecting candidate windows for the input sketch.

initialize n× n spatial grid for the input sketch
initialize m×m seeds uniformly sampled from the grid
initialize histogram hi for each window wi

initialize global histogram H =
∑n2

i=1 hi

W ← {}, H ← {}
for y = 1 to m do

for x = 1 to m do
w ← {}, h ← 0
for i = 1 to n/4 do

w ← w + δw(x, y, i), h ← h+ δh(x, y, i)
if Fapp(h) ≥ kapp × Fapp(H) then

if Fvar(h) ≤ kvar × Fvar(H) then
break

end if
end if

end for
W ← W + w, H ← H + h

end for
end for
return W and H

Since the histogram of oriented gradients (HoG) [5] is known to perform well
in object detection and image retrieval problems, we use its unnormalized version
to describe the feature inside windows for fast computation. Let h = {b1, . . . , bn}
denote the feature histogram of window w, δh(x, y, i) denote corresponding his-
tograms of δw(x, y, i) and H denote the global histogram of the whole sketch.
We define the appearance constraint Capp as

Fapp(h) ≥ kapp ×Fapp(H), where Fapp(h) =
1

n

n∑

i=1

bi (1)

Fapp is the appearance objective function, which essentially computes the mean
value of h. When Fapp is high, it shows information carried by the window is
relatively large, while low Fapp indicates that the window is almost empty. Ap-
parently, Capp constrains each window to contain enough information as expcted.
Our second constraint is called variety constraint Cvar, which is formulated as

Fvar(h) ≤ kvar ×Fvar(H), where Fvar(h) =
1

n

n∑

i=1

(bi −Fapp(h))
2 (2)

Fvar is the variety objective function, which is the variance of h indeed. If Fvar is
low and Fapp is high, it means that all bins in h have comparatively high values.
As a result, windows satisfying Cvar should have more diverse information, which
is proved to be useful in sketch retrieval [14]. Note that parameters kapp and kvar
control the global effects of H, and they are set to 0.8 and 1 experimentally. The
whole algorithm is summarized in Alg. 1.



Sketch-Based Retrieval Using Content-Aware Hashing 137

Fig. 3. Salient windows of a sketch. (a) input sketch; (b) salient points detected by
Harris corner; (c) top 3 salient windows computed by Eq. 3 with overlapping area less
than 20%.

We note that the objective function Fapp of Capp is incrementally computable,
for it satisfies the equation: Fapp(h + δh) = Fapp(h) + Fapp(δh). As the win-
dow grows, it is unnecessary to compute Fapp across the entire histogram but
sufficient to only update the affected part. Therefore, to evaluate Capp in each
iteration is considerably fast. Though Fvar is not incrementally computable,
it does not need to be evaluated until Capp is satisfied. So our algorithm still
has competitive computational speed. Experiments show that using candidate
windows generated by our algorithm can improve retrieval results achieved by
many traditional visual descriptors such as SIFT descriptor [13], HoG [5] and
GALIF [8]. Detailed results are shown in Sec. 4.1.

2.2 Salient Window Detection

For local feature detection, keypoint-based detectors, such as difference of Gaus-
sian (DoG) [13], Hessian operator [1] and Harris-Laplace detector [15], are more
suitable for sketch feature extraction than region-based methods [17,24]. This is
because a sketch usually includes separate lines and points other than continu-
ous areas. These keypoint-based methods are mainly designed for finding salient
points, which correspond to the corners and end points in sketches. Harris cor-
ner detector is employed in our method, for it achieves better performance than
other keypoint-based methods as shown in [14].

For each window wi ∈ W , where W is a set of candidate windows output by
Alg. 1, we compute ki to measure the saliency of wi in a sketch as

ki = 1 +
Number(Si)√

Area(wi)
(3)

where Number(Si) denotes the number of salient points in wi detected by Harris
corner detector and Area(wi) is the pixel-based area of wi. It has the intuitive
interpretation that a window is salient when it is small while contains many
salient points. Note that we use the square root of the area to make it less sen-
sitive to scales: the measure remains stable across different window resolutions.
See Fig. 3 for visual examples of salient windows detected in a sketch.
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Fig. 4. Example of hashing. (a) input sketch partitioned into 4 parts spatially; (b)
feature vectors fi (blue) and ki (orange) of all windows in part B; (c) weighted binary
vectors by f̄i × ki; (d)-(f) vectors are summed, binarized and appended into the final
hash code.

2.3 Hashing from Window Content and Saliency

Let fi denote the feature vector extracted from wi using certain visual descriptor
(HoG in this paper). fi is then binarized into f̄i by setting the highest 40%
values to 1 and the rest to -1. Note that thanks to the two constraints proposed
in Sec. 2.1, features are evenly distributed and message loss can be reduced
in this step. Then we follow the manner of Sim-hash [4] to produce locality-
sensitive hashing for each sketch via f̄i and ki, where window saliency ki is used
as a weighting term for f̄i. Spatial information is shown to be helpful to sketch
retrieval systems [6]. In order to capture spatial information of local features, we
partition each sketch image into four parts. Other than hashing patch features in
the entire sketch space, we do it in each part and finally append them together
(a window is considered to belong to a certain part when its center is inside that
part). Detailed steps are explained in Fig. 4.

3 Retrieval Framework

Before feature extraction and hashing, images and 3D models are converted
into edge maps. Given an image, we generate a coarse edge map Ec by Canny
algorithm [3], which yet contains many erroneous detected edges from back-
ground clutter. In order to find the most salient area in the image, we use [24]
to get its saliency map S. We also apply maximum filter MF on S to enlarge
salient regions to avoid the degenerate case when object contours are missing
due to segmentation errors. Then the final salient edge map E is computed as
E = Ec × MF(S), where E is binarized by threshold 0.5 empirically. Fig. 5
presents our final edge maps. Given a 3D model, we follow the pipeline in [8] to
get its projection edge maps.

Both sketches and edge maps are cut out of their minimum square bounding
boxes and resized into 160× 160 resolution to be translation and scale invariant.
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Fig. 5. Example of an image edge map. From left to right: input image, Canny lines [3],
saliency map detected by [24] and our final edge map.

Algorithm 2. Pipeline of the retrieval framework.

Index:
1. produce edge maps E for all images/3D models in datasets
2. generate candidate windows wi for E according to Alg. 1
3. compute HoG feature fi and saliency ki for each wi according to Sec. 2.2
4. hash fi and ki into h according to Sec. 2.3
5. follow [16] to generate index I for all h
Query:
1. follow the step 2-4 of Index to generate hs for input sketch S
2. return similarity ranking R by hs from I as query results

Following Alg. 1, a sketch is divided into a 80 × 80 grid, and 15 × 15 seeds
are uniformly sampled. In each patch, we compute the unnormalized HoG with
8 orientations and produce a 8-bin histogram. After all candidate patches are
generated, they are resized to 16× 16. The HoG descriptor is applied to extract
features in each patch, for its unnormalized version has already been calculated.

Given a query, we find the most similar edge maps via the hash code proposed
in Sec. 2.3 based on their Hamming distance. For all hash codes are binary, their
Hamming distances can be calculated by several bit xor and shift operations,
which is competitively fast even without indexing. In order to gain better runtime
performance, we further follow the indexing strategy proposed by [16], which
can be combined with our approach directly. It enables our retrieval process
to be performed in sub-linear time. The pipeline of our retrieval framework is
summarized in Alg. 2.

4 Experimental Results

In this section, extensive experiments are conducted to compare the proposed
algorithm with other state-of-the-arts for sketch-based retrieval tasks. All ex-
periments are done on the following three standard datasets. 1) Magic Sketch
Database: Liang et al. [11] establish this database with a total of 1100 sketches
from 55 classes drawn by 10 people. We use it to evaluate variants of our
approach. 2) TU Berlin Benchmark: This is a sketch-based image retrieval bench-
mark introduced by Eitz et al. [7] which consists of 31 subjects, each one in-
cluding 1 sketch and 40 corresponding test images. We use this benchmark to
evaluate our approach for sketch-based image retrieval tasks. 3) PSB Dataset:
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Fig. 6. Left: Evaluation of each component in our method. Right: Improvement of
different visual descriptors caused by our method.

Eitz et al. [8] perform a large-scale experiment to collect 1,914 sketches for all 3D
model categories in the Princeton Shape Benchmark (PSB) [19]. Our approach
is evaluated on it to show the performance in sketch-based 3D model retrieval
tasks.

4.1 Evaluation of Our Approach

Our method spends about 1.87 seconds to retrieve a sketch on the Magic Sketch
Database, tested on a desktop computer with Intel 3.39GHz Quad-core CPU
and 16GB memories and implemented by MATLAB without parallelized.

To evaluate the effectiveness of selecting windows with constraintsCapp (Eq. 1)
and Cvar (Eq. 2), we implement a baseline using overlap grid (Grid) according
to [2]. Then results via selected windows (SW) with Capp only and both of them
are compared. To evaluate the performance of window saliency ki (Eq. 3), we
equally set window saliency by 1 in previous results for comparison. Results in
Fig. 6(left) shows that our two constraints are complementary, and removing
any of these three components would cause performance drop.

To further understand our method, we evaluate results using traditional visual
descriptors such as SIFT [13] and GALIF [8] in addition to HoG [5]. Fig. 6(right)
shows the performance of their grid-based version and the other one with our
constrainted selected windows (SW). All of them are improved by our approach.
We note that although GALIF achieves the best performance due to its multi-
scale sampling strategy other than histogram-based method, it requires more
time to be calculated. Therefore, HoG is employed in our approach.

4.2 Comparison with State-of-the-Art

On the TU Berlin Benchmark, we compare our algorithm with other methods
using Bag-of-Words (BW) [7], key shapes (KS) [18] and Min-hash (MH) [2]. We
use the benchmark scores introduced by [7] to evaluate the performance. On the
Magic Sketch Database, methods via biased SVM (BSVM) [11], spatial relations
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Table 1. Results on the TU Berlin Benchmark [7]

Method BW[7] KS[18] MH[2] Ours

Score 0.277 0.289 0.336 0.352
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Fig. 7. PR curves of different algorithms on the Magic Sketch Database [11] (left) and
PSB Dataset [8] (right)

(SR) [12] and spatial proximity (SP) [9] are compared with ours. On the PSB
Dataset, we compare ours with methods via diffusion tensor (DT) [22], grid-
based SIFT (SIFT-Grid) and GALIF (GALIF-Grid) [8]. All results on these two
datasets are evaluated by standard Precision-Recall (PR) Curves. Both results in
Table 1 and Fig. 7 show that our approach outperforms other state-of-the-arts.
Some visual retrieval results of our approach are shown in Fig. 1.

5 Conclusion

In this paper, we present a novel sketch-based retrieval framework using content
aware hashing. Feature window patches are selected with appearance and variety
constraints to account for content distribution. A saliency value of each window
is then calculated. For feature extraction, hashing is performed to combine con-
tent, saliency and spatial information of visual features and enables efficient re-
trieval in sub-linear time. Experimental results on sketch, image, and 3D model
datasets demonstrate our proposed algorithm performs favorably against other
alternatives for sketch-based retrieval systems. Future work includes exploring
more effective visual descriptors for sketches.
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