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Abstract In this paper, we introduce a novel learning-
based approach to automatically select the best views of 3D
shapes using a new prior. We think that a viewpoint of the 3D
shape is reasonable if a human usually draws the shape from
it. Hand-drawn sketches collected from relevant datasets are
used tomodel this concept.We reveal the connection between
sketches and viewpoints by taking context information of
their contours into account. Furthermore, a learning frame-
work is proposed to generalize this connection which aims
to learn an automatic best view selector for different kinds of
3D shapes. Experiments on the Princeton Shape Benchmark
dataset are conducted to demonstrate the superiority of our
approach. The results show that compared with other state-
of-the-art methods, our approach is not only robust but also
efficient when applied to shape retrieval tasks.

Keywords Best view selection · Sketch-based modeling ·
Context similarity · Bag-of-features

1 Introduction

The recent years witnessed tremendous advances in the tech-
nologies of 3D graphics, and they are widely accessible in
our daily life. Especially, the 3D shape as the basic element
of 3D graphics always plays a vital role. This has resulted in
the demand for various accurate 3D shapemodeling and ana-
lyzing methods for real-world applications. Automatically
selecting the best views for a given 3D shape is one of the
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most important preprocessing tasks in 3D graphics. It has
been applied inmany3Dgraphics applications, including vir-
tual reality, shape retrieval [4,9,25], computer-aided design
(CAD) [18], 3D multimedia [32], and so on. The problem of
best view selection is to seek a few viewpoints that follow
human visual preference.

Many research works have been conducted to solve this
problem. Previous works, such as mesh saliency [13] and
viewpoint entropy [29], focus on discovering the relationship
between geometric characteristics (e.g. structure of mesh
strips or vertexes) and human visual perception. Their goal
is to answer the question: Which part of a 3D shape catches
human interest? However, this is very difficult since accu-
rate shape analyzing has already been a challenging task.
Recently, Liu et al. [17] gives a new insight into this field.
Rather than answering the above question, it makes use of
things which carry the information of human visual prefer-
ence to estimate the viewpoint of 3D shapes. The web image,
a medium that contains view information about how people
choose their favorite views in photographing, is employed
and has achieved good performance.

Other than photographing, painting is another prior that
reflects human visual preference. For example, a sketch can
depict the painter’s favorite view of the object. Moreover,
sketches depicting the same object but drawn by different
painters can showdifferent preferences. Professional painters
always prefer perspective drawing, while amateurs choose
the easiest angle (front or side) to avoid a poor drawing.
This kind of diversity makes it possible for us to discover all
candidate best views for a certain object.

The main contribution of this paper can be summarized
as follows: Firstly, we reveal an another interesting prior for
the best view selection problem of 3D shapes. We think a
viewpoint of the 3D shape is good if people usually draw
the shape from it. In addition, hand-drawn sketches are used
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Fig. 1 Sketches reflect favorite views when people draw objects. Left
different 3D shapes. Right relevant sketches of the shapes

to model this concept. Thanks to the rapid development of
sketch-based shape retrieval technology, lots of large-scale
3D shape datasets providing relevant sketches are available
from different sources [4,14,15]. As illustrated in Fig. 1,
these datasets make it possible for us to model our concept,
for the meaningful relationship between sketches and 3D
shapes is established by them.

Secondly, compared with images, sketches are line draw-
ings full of deformation and noises, while color and texture
messages are lost. Therefore, mapping sketches to accurate
viewpoints of 3D shapes is challenging. To deal with this
condition, we make use of context information of contours
from input sketches. A contour is a set of edges forming lines
or curves. Furthermore, the context of a contour is regarded
as how a contour and its surrounding ones are connected to
each other, which can be used to represent a meaningful part
of an object (e.g. silhouettes of a foot or a tail). We notice
that context information of sketch contours always encodes
rich information and is utilized to measure the similarity.
In practice, this measurement achieves stable performance
and can reduce the influence of deformation and noises from
sketches.

Thirdly, contour context also carries common features
which reflect human preference of drawing an object. For
example,we always draw feet of horses or desks at the bottom
of a sketch, while we draw tails of animals on the horizontal
sides. Motivated by this observation, we propose a learning
framework to learn a generic best view classifier via context
features and use it to select the best views for different kinds
of 3D shapes. Experiments show that our approach is very
efficient compared to other state-of-the-art methods, espe-
cially when applied in shape retrieval tasks.

2 Related work

The web image-driven approach proposed by [17] is one
which is most related to our work. It directly explores human
perception on observing 3D shapes from the relevant web
images. Area similarity, silhouette similarity and saliency
disparity are utilized to compute the correspondingview from
an image. Final views are then judged by voting on all input
images.

Our method mainly differs from [17] in the following two
aspects. Firstly, we explore human preference on observ-
ing 3D shapes by estimating where human tends to draw
it. Hand-drawn sketches other than photos are used to learn
this bias. And we also propose a different similarity mea-
surement to map sketches to viewpoints, which can handle
deformation of sketches and produces stable results. Sec-
ondly, selecting views by images disables [17] to best view
computationwhen the class of an input 3D shape is unknown.
Instead, we generalize the specific relation between sketches
and viewpoints in the dataset by learning a generic classifier,
which can compute best views for 3D shapes without precise
classification.

Other works compute best views directly from the geo-
metric features of 3D shapes, such as mesh strips or vertexes.
Saliency of a 3D shape is firstly addressed in [13] and the best
view is selected as the one observing the largest amount of
mesh saliency among a set of sampled views. Recently, a new
saliencymeasurement is introduced in [27], which is efficient
for large point sets. Viewpoint entropy [29] is another impor-
tant geometricmodel to help to select best viewpoints of a 3D
shape. It employs the projected area of all the visible triangles
as entropy to measure the best view with maximum rela-
tive projective area. Moreover, Page et al. [23] improves this
method by using information theory. However, this kind of
methods usually generates unreasonable results when the 3D
shape is complex, since the connection between geometric
structure of 3D shapes and humanperception cannot be easily
modeled.

Learning guided methods are also introduced in recent
works. Laga and Nakajima [12] uses boosting to learn
best views of 3D shapes based on the assumption that
models belonging to the same class of shapes share the
same salient features. Laga [10] presents another data-driven
approach. It formulates the best view selection problem as
a feature selection and classification task. This approach
is robust to intra-class variations and is consistent within
the models of the same class of shapes, but its perfor-
mance highly depends on the training datasets. Eitz et al. [4]
just uses the silhouette length, projected area and smooth-
ness of depth distribution over the shape as the features
to learn a perceptual classifier. Although it shows capable
results for simple shapes, it fails easily when the shape is
complex.
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Fig. 2 Overview of our algorithm. The four stages of our algorithm:mapping sketches to the viewpoints of corresponding shapes, sampling training
data, learning a best view classifier and ranking final viewpoints

3 Approach overview

The main idea of our algorithm is to learn perceptual view
information from relevant hand-drawn sketches. Formally,
for a 3D shape mi , a series of corresponding sketches draw-
ing mi are provided. We aim to learn a best view classifier
using context information of contours from these data. From
the uniform view space Vi around mi , a set of best views is
selected by this classifier as the ones reflecting where human
is possibly to draw the shape. The work flow of our algo-
rithm is shown in Fig. 2, which includes four stages: mapping
sketches to the viewpoints of corresponding shapes, sampling
training data, learning a best view classifier and ranking final
viewpoints.

The rest of our paper is organized as follows.
Section 4 describes an efficient similarity measurement
between sketches and viewpoints of the relevant 3D shape.
We use this measurement to map sketches to viewpoints for
further sampling the training data and learning the best view
classifier. Section 5.1 describes howwemap sketches to suit-
able viewpoints and how we sample positive and negative
examples. Then our learning algorithm of view selection is
introduced in Sect. 5.2. In Sect. 6, a greedy ranking algorithm
is proposed to rank the classification results which takes view
diversity into account. At last, all experimental results are
shown in Sect. 7.

4 Similarity measure

Before revealing the connection between a hand-drawn
sketch and a viewpoint of the 3D shape, we need to convert
the projection of the viewpoint into a sketch-like view map
at first for further comparison. Recent works [18,30] present
a hybrid line rendering method to generate 2D views for the
3D shape and obtain good performance. In this paper, we
adopt this method and combine exterior silhouettes, occlud-
ing contours, suggestive contours [3] and shape boundaries
to generate the final view map. An example of line rendering
view map is shown in Fig. 3b.

Fig. 3 An illustration of contour grouping. a An input 3D shape; b the
line rendering view map generated by hybrid line rendering method;
c the result after edge thinning; d the final result of contour grouping
(to avoid clutter, we only show contour groups on the upper left of
the image); e, f two differnt walks (shown in red) starting at the same
contour group (shown in blue)

4.1 Contour grouping

A contour is defined as a set of edges forming a coherent
boundary, curve or line [33]. Our goal is to use context infor-
mation of contours to measure the similarity between two
contour maps.1 Therefore, all pixels in a contour map should
be grouped into meaningful contour groups in advance. Here
we present a simple contour grouping strategy.

Given a contour map, we initially perform the edge thin-
ning [31] operation to it. After that, we compute the gradient
orientation for each pixel on lines using the Sobel opera-
tor [7]. The result is a very sparse line drawing map, and
each line is one pixel width with each pixel p having an edge
orientation θp. This preprocessing operation can reducemost
of the noise on the initial map, while simultaneously being
very efficient.

Then pixel seeds are uniformly sampled from all lines in
the contour map. We form the initial contour groups using a
simple greedy approach that combines 8-connected contours
from each seed until the sum of their orientation differences
is above a threshold (π/2). Then for an initial contour group

1 In this paper, we use “contour map” to refer either to an input sketch
or to a view map generated from the viewpoint of 3D shapes.
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gi , we denote its mean position as xi and its mean orientation
as θi . According to [33], the affinity between two groups is
defined as

a(gi , g j ) = | cos(θi − θi j ) · cos(θ j − θi j )|2 (1)

where θi j is the angle between xi and x j . We use Eq. 1
to greedily merge contour groups until the maximum value
of each pair of a(gi , g j ) is less than a certain threshold
(0.8). Intuitively, it can further merge two groups if the angle
between the groups’ means is similar to the groups’ orien-
tations. We get the final grouping results as illustrated in
Fig. 3d.

This contour grouping method is computationally trivial.
In practice, we find that the results are robust when applied
in contour context computation.

4.2 Context-based measure

Using context messages tomeasure the similarity of different
parts of objects is proven very efficient in many 3D shape
analyzing tasks [8,11,21]. Context of a contour is regraded
as how the contour and its surrounding ones are connected
to each other, which provides rich information. In this paper,
we think two contours are similar if their appearance and
context are similar. The graph model presented by [11] is
used to formulate our approach.

We begin tomodel thismethod by defining the appearance
similarity of two contour groups gi and g j

dapp(gi , g j ) = exp

(
−dspa(gi , g j )

2

2σ 2
spa

)
· cos(θi , θ j ) (2)

where θx is the orientation of gx , and dspa(gi , g j ) is the
Euclidean distance between their normalized mean positions
in the map (with σspa = 0.2). Intuitively, two contour groups
are similar if they are in the same position and with same ori-
entation.

In order to take context messages into account, we con-
struct a dual graph G = (V, E) for each contour map. Each
node in V represents a contour group. Two nodes are con-
nectedwith an edge e ∈ E if their contour groups are spatially
adjacent in the contour map. LetWn

x denote a walk of length
n starting at the node (i.e. contour group) gx , and we define
the similarity of two walks as

dnwalk

(
Wn

i ,Wn
j

)
= 1

n + 1

n+1∑
k=1

dapp
(
wk
i , w

k
j

)
(3)

wherewk
x is the k-th node on thewalk ofW

n
x . AwalkWn

x is an
ordered node sequence from node gx which can capture the
local contextual structure of gx . As a result, we can measure

the context similarity of two nodes gi and g j by compare
all the walks of them and retain the best match respectively.
This process can be formulated as

dncon(gi , g j ) = 1

|Pn
i |

∑
{a|a∈Pn

i }
max

{b|b∈Pn
j }
dnwalk(a, b) (4)

where Pn
x is a collect of all walks of length n starting from

node gx and |Pn
x | is the number of walks in Pn

x . For P
n
x is

able to capture the context information of gx , we call it the
context descriptor of gx . Note that when n = 0, Eq. 4 reduces
to the appearance similarity given in Eq. 2.

Given the similarity measurement defined by Eq. 4, com-
puting part-wise correspondences between two contourmaps
becomes straightforward. Each contour map is represented
with its structural graph. For each contour group on a contour
map, we compute its similarity to the other parts on the target
map using the measurement defined in Eq. 4 and obtain the
best match. Therefore, the context similarity of two contour
maps ci and c j is

Sncon(ci , c j ) = 1

|ci |
∑

{gxi |gxi ∈ci }
max

{gyj |gyj ∈c j }
dncon

(
gxi , gyj

)
(5)

where gxi is the contour group in ci and |ci | is the number
of groups in ci . Obviously, when n = 0, Eq. 5 reduces to an
equation that only takes appearance into account:

Sapp(ci , c j ) = 1

|ci |
∑

{gxi |gxi ∈ci }
max

{gyj |gyj ∈c j }
dapp

(
gxi , gyj

)
(6)

In Sect. 7.1, we demonstrate that Sncon(ci , c j ) outperforms
Sapp(ci , c j ), and taking context information into considera-
tion can evidently improve the performance.

The context similarity given by Eq. 5 requires setting the
maximum length n of the walks. Setting n to 0 is equivalent
to comparing contour groups by their appearance similarity.
Larger values of n capture more structures, while small val-
ues of n capture less. Experimentally, we found that values
between 3 and 5 provide good and stable results. And we set
n = 4 in all results shown below.

4.3 Efficient computation via key points

The similaritymeasurement of contourmaps is the core algo-
rithmof our approachwhich is further applied in the sampling
and training stages. It should be simple and fast enough to
be continuously computed. However, Eq. 5 requires a large
search space for each pair-wise match of contour groups, and
thus inefficient. We notice that the most context information
in a contour map is carried by the corner of contours, while
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Fig. 4 Illustration of keypoint-based detectors. a An input contour
map; b key points detected by Harris corners [22]; c key contour groups
(shown in red) computed in the contour map

single lines or curves is less important. Therefore, it is unnec-
essary to conduct all pair-wise matches between two maps.
Here we speed up the computation via only performmatches
at the key points of contour maps.

Recent approaches [16,20] show that keypoint-based
detectors, such as difference ofGaussian (DoG) [19],Hessian
operator [1] and Harris-Laplace detector [22], are suitable
for line drawing feature extraction. Harris corner detector is
employed in our method, for it achieves better performance
than other keypoint-based methods [20]. Given a contour
map cx , we compute the Harris key points of it at first. A
set of contour groups Kx are constructed as shown in Fig. 4,
which only contains groups having key points on them. Then
the key context similarity between twomaps canbe computed
as

Skey(ci , c j ) = 1

|Ki |
∑

{gxi |gxi ∈Ki }
max

{gyj |gyj ∈K j }
d4con

(
gxi , gyj

)
(7)

where we fix the length of walks to 4 here. Moreover, we
define all Pn

i (Eq. 4) starting from contour groups which are
contained in Kx as the key context descriptors of a given
contour map.

5 Learning the best views

5.1 The training data

During the training process, a collection of 3D shapes M
and their corresponding sketches Si to each shape mi ∈ M
are assumed to be provided. In the experiments, 3D shape
collection of the Princeton Shape Benchmark (PSB) [26],
and relevant sketch data collected by [4] are used. The PSB
defines a split into training and test dataset, which both have
907 shapes with different classification. Then for each shape,
a set of sketches belonging to the same category are collected
by [4]. Each sketch consists of hand-drawn silhouettes and
closed boundary curves, which meets our requirements. In
the remainder of this paper, we use the training dataset of the
PSB to learn the classifier, while we evaluate our approach
on the test dataset.

Like many other learning problems, in order to learn a
classifier which helps to score a given viewpoint, positive

and negative examples are required. However, the associa-
tion between the sketch and the viewpoint of a shape is not
established on the PSB dataset. Here we present an approach
to map a sketch to the shape’s viewpoint via the key context
descriptor described in Sect. 4.3, and further we use this kind
of relation to collect the best andworst viewpoints as training
samples.

Firstly, for each shape mi ∈ M, we uniformly sample K
viewpoints on its bounding sphere and compute the contour
map cki ∈ Ci for the viewpoint vki ∈ Vi . Experimentally, we
set K = 300 to achieve stable performance. Then, for each
sketch s ji ∈ Si belonging to shape mi , the similarity mea-
sure defined by Eq. 7 is utilized to computed the similarity
between every pair of s ji and c

k
i . We formulate the possibility

that a sketch s ji is drawn from the viewpoint vki as: ∀vmi ∈ Vi ,

p(s ji , vki ) =
Skey

(
s ji , cki

)
− min Skey

(
s ji , cmi

)
max Skey

(
s ji , cmi

) (8)

where cxi indicates the contour map computed from vxi .

Obviously, we map the sketch s ji to the viewpoint vki when

p(s ji , vki ) = 1, and we treat all the viewpoints that meet
this condition as the positive samples. To collect the negative
samples, the average of p(s ji , vki ) towards allSi is computed,
then the viewpoint vki with the average possibility lower than
a threshold ξ is regarded as a negative sample. This negative
sampling strategy has the intuitive interpretation that a view-
point is worse if people seldom draw the 3D shape from it.
Finally, we collect the samples for each shapes in the PSB
dataset and gather positive and negative examples according
to this strategy respectively.

Given a viewpoint vki of the shapemi , our above sampling
strategy can be summarized as the following discriminant
function

Θ(vki ) =
⎧⎨
⎩
1, if ∃smi ∈ Si , p

(
smi , vki

) = 1;
0, if ∀smi ∈ Si , 1

m

∑
m p

(
smi , vki

)
< ξ ;

null, otherwise

(9)

where Θ(vki ) = 1 indicates that vki is treated as a positive
sample, while 0 is a negative one. We set ξ to 0.05 experi-
mentally. Note that all the sampling process is performed in
advance to save computational efficiency.

5.2 Learning algorithm

The feature vector of each viewpoint of the 3D shape is built
upon a bag-of-features (BoF) model, which has been widely
used to extract visual features in various computer vision
tasks [28]. The basic idea of this approach is to compare
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the difference among viewpoints based on a histogram of
features.

In the training dataset, we randomly sample one million
key context descriptors presented in Sect. 4.3 from the con-
tour maps of both positive and negative samples, in order to
cover a wide variety of possible descriptors. Then the contex-
tual vocabulary is generated via a fast version of k-medoids
clustering algorithm [24]. The set of resulting cluster cen-
troids W = {wi } forms the contextual vocabulary where
each entry wi (contextual word) represents the contextual
features in the i th cluster. We represent each viewpoints as
the histogram of contextual word frequency from the rele-
vant contourmap. Since the size of the contextual vocabulary
|W| is an important parameter that strongly influences per-
formance, we determine its value (|W| = 800) according to
the optimization framework proposed by [4].

Let hki denote the feature vector of the viewpoint vki . We
aim to learn a scoring function Score(hki ) ∈ [0, 1] to predict
the possibility that human tends to draw from the viewpoint.
This supervised learning problem can be easily solved by
the Support Vector Machines (SVM), which have been suc-
cessfully applied to classification tasks in computer vision,
computer graphics, and geometry processing due to its stable
performance. The scoring function is defined as:

Score(hki ) = t · hki − b (10)

where t and b are learned coefficient and bias terms. Since
most of the feature vectors are sparse, we use the LIBLIN-
EAR library provided by [6] to train the classifier because
of its fast computation speed. Note that in order to balance
the number of positive and negative examples, we equally
sample five thousand viewpoints from both of them during
the training process.

6 Viewpoint ranking

Each candidate viewpointvi ∈ V of a 3Dshapem is scoredby
Eq. 10 we learned from 2D sketch samples, which naturally
reflects the possibility that human tends to draw the 3D shape
from vi . And the best viewpoints can be selected as the ones
with the highest scores.

Since eachvi is densely sampled from thebounding sphere
of the shape, nearby viewpoints always have close scores due
to their similar contour maps. Therefore, if we select the top
N best vi by ranking the highest scores directly, results will
be collected just in one side of the 3D shape, which is useless.
In order to discover all possible viewpoints, diversity should
be encouraged when they are ranked. Below, we detail our
ranking algorithm, which encourages top-ranked viewpoints
to correspond to different sides of a 3D shape.

Fig. 5 We use the Intersection over Union (IoU) to computed the sim-
ilarity between two viewpoints. Top different views of a 3D shape.
Bottom relevant projection areas of different views. The IoU of view-
point (a) and (b) is 0.87, while the IoU of viewpoint (a) and (c) is 0.43

Let si be the initial score of vi computed by the classifier
in Eq. 10. Inspired by the ranking strategy proposed in [5],
we introduce a new scoring function s̃i that helps to rank
viewpoints, which is formulated as

s̃i = si + α(Φ(vi )) (11)

whereΦ(vi ) is a penalty term to suppress similar viewpoints,
and α(·) is a monotonically decreasing function that controls
the effect ofΦ(vi ).We found that the specific choice ofα(·) is
not very important, as long as it falls to zero for a moderate

value. Experimentally, we use α(x) = exp
(
− x2

2σ 2

)
, with

σ = 0.2. The similarity penalty term Φ(vi ) is computed as

Φ(vi ) = max
{v j |v j∈Ṽ}

I oU (vi , v j ) (12)

where Ṽ is a set of viewpoints including all the ones
rank higher than vi . The Intersection over Union (IoU) is
employed to measure the similarity of two viewpoints. IoU
is defined as the intersection of two viewpoints’ projection
areas divided by their union. Figure 5 shows examples of
viewpoints with different IoU scores. The term Φ(vi ) penal-
izes viewpoints with high similarity to previously ranked
viewpoints and leads to lower s̃i . As a result, the function
s̃i forces we to select new viewpoint from different sides of
the 3D shape, which ensures the diversity. Note that without
loss of generality, we define s̃i = si when Ṽ is empty.

To select the top N best viewpoints of the 3D shape, we
iteratively rank all viewpoints by s̃i and select the viewpoint
ṽ with the highest value as the candidate best one. Note that
we perform mean-shift [2] from ṽ with si to find the local
maximum to conduct a more stable best viewpoint v. Finally,
we can obtain the best view set for the given 3D shape. Algo-
rithm 1 summarizes our whole ranking process.
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7 Experiments

In this section, we conduct extensive experiments to eval-
uate the performance of our view selection algorithm. We
demonstrate that our approach achieves competitive results
as compared with other state-of-the-art methods. As men-
tioned in Sect. 5.1, the PSB dataset [4,26] is employed to
train and evaluate our algorithm.

7.1 Evaluation of context similarity

Theway tomeasure the similarity between two contourmaps
is very important to our approach, which influences the accu-
racy of our sampling and training stages. Thus we conduct an
experiment that compares the similarity measurement pro-
posed in Sect. 4 with human intuition to demonstrate its
efficiency.

Firstly, we randomly sample one hundred shapes and one
relevant sketch for each 3D shape in the test dataset. Given
a shape mi and its relevant sketch si , we invite ten users
to select the proper viewpoint according to the sketch. To
avoid strong bias and ensure universality, all participants
are chosen from college students without professional paint-
ing background. And each user is asked to select the most
likely view from all candidate positions (uniformly sampled
as described in Sect. 5.1) of the shape if they draw the given
sketch.

We treat these user-labeled data as the ground truth. Then
we map the sketch to a viewpoint vi according to Sect. 5.1
by different measurements, and computed the accuracy as

Accuracy(vi ) = 1

n

n∑
k=1

I oU (vi , v̄
k
i ) (13)

where v̄ki is the viewpoint selected by the k-th user for
shape mi , and n is the number of users. Note that we
use projection IoU defined in Sect. 6 to compute the sim-
ilarity between two viewpoints. Finally, we regard the

Table 1 The average accuracy and runtime (seconds per shape) of
different similarity measurements proposed in Sect. 4

Measure Accuracy (%) Time (s)

Sapp (Eq. 6) 64.33 0.134

S4con (Eq. 5) 85.62 4.596

Skey (Eq. 7) 84.49 0.858

The results are tested on a desktop computer with an Intel 3.39 GHz
Quad-core CPU

Fig. 6 Visual examples of mapping sketches to viewpoints of 3D
shapes. We use the key context similarity measurement of contours
(Eq. 7) to find the suitable viewpoint for a given sketch
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Fig. 7 Comparison of our best view selection approach to various
state-of-the-art algorithmswhen applied to shape retrieval tasks, includ-
ing uniformly distributed views, web image-driven method [17], best
view classifier [4], and mesh saliency [13]
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Table 2 Results of different view selection methods when applied to
shape retrieval tasks

Method AUC # of views

50 uniformly distributed views 0.235 50

Mesh saliency [13] 0.202 34

Best view classifier [4] 0.229 15

Web image-driven views [17] 0.239 13

Our method 0.241 7

Our method obtains the standard area under the curve (AUC) perfor-
mance with the fewest average number of views

mean accuracy of a similarity measurement of all shapes
as its performance. We evaluate different similarity mea-
surements proposed in Sect. 4 respectively, including Sapp
(Eq. 6), S4con (Eq. 5) and Skey (Eq. 7). Results are shown in
Table 1.

As illustrated in Table 1, taking the context messages into
account can significantly improve the accuracy, while more
time is needed for computation. With minor loss of accuracy,
using keypoint-based similarity measurement can speed up
thewhole process. Therefore, the key context similaritymea-
surement in Eq. 7 is themost efficient method after balancing
time and accuracy. Figure 6 shows some visual results of our
key context similarity measurement.

7.2 Shape retrieval performance

Selecting best views is a very intuitive task for observing
3D shapes, thus the performance of a view selection method
cannot be directly quantized from simple datasets. Instead,
we evaluate the performance of our method by applying it
into shape retrieval tasks.

We follow [4] to set up the experiment. Different view
selection methods are used to compute the candidate view-
point of each shape in the dataset, and we get final retrieval
results respectively. Area under the curve (AUC) computed
from the Precision-Recall Curve of a retrieval result is used
to evaluate the retrieval performance. Then for each view
selection method, we vary the parameters to gain different
candidate viewpoints, and plot its AUC-#Views Curve. We
compare our approach with other state-of-the-art methods,
including uniformly distributed views, web image-driven
method [17], best view classifier [4], and mesh saliency [13].
As shown in Fig. 7, our method outperforms the other meth-
ods using similar number of candidate views and especially
when the number of views is relatively small.

According to [4], the standard retrieval performance is
obtained when 50 uniformly distributed views are used, and
we treat it as the baseline.Obviously, a view selectionmethod
is better if it reaches the standard performance with fewer

Fig. 8 Visual examples of best views obtained by different approaches. From top to bottom ourmethod,web image-drivenmethod [17], perceptually
best view classifier [4], and mesh saliency [13]
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selected candidate views. Table 2 shows the average view
number of eachmethodwhen its AUC is close to the standard
performance. Ourmethod achieves the standard retrieval per-
formance with the fewest selected viewpoints. Specifically,
the number of viewpoints generated by our approach is six
times fewer than the baseline and nearly twice fewer than
other state-of-the-art methods. Figure 8 shows some visual
results of our approach.

7.3 Limitation

Our approach favors best views from the front or side of a 3D
shape, which reflects the bias when human draws an object.
Common 3D shapes existing in our daily life with regularly
grid structures, such as birds, cars, fishes, instruments, and
horses are well handled by our approach. Compared to [17],
our approach sometimes selects different viewpoint for the
same object, since different bias (views in photographing and
drawing an object) are employed respectively.

However, we find that the performance of our approach
usually depends on the quality of training samples. Poorly
drawn sketches are harmful to the accuracy of our sampling
stage in Sect. 5.1 and influence the final performance. Sec-
ondly, our method fails when dealing with odd objects that
seldom appear in our daily life, for no such kind of fea-
tures can be learned from hand-drawn sketches. Thirdly, our
method cannot convey all possible human visual preferences
for an object. For example, in Fig. 8, photographing-based
approach [17] shows that people tend to observe vehicles
(e.g. cars and motorcycles) from oblique views, while this
kind of information is not carried by sketches. That is the
limitation of our method.

8 Conclusion

We present a novel approach to select the best views of a 3D
shape by hand-drawn sketches.We take advantage of context
information extracted from contours to reveal the connection
between sketches and viewpoints. Furthermore, a learning
framework using the bag-of-features model is presented to
generalize this connection. Experiments on the Princeton
Shape Benchmark (PSB) dataset demonstrate the superiority
of our approach when applied to shape retrieval tasks.

Future work includes exploring other effective context
descriptors for sketches. In order to describe human visual
preference more sufficiently, how to combine our method
with other algorithm using different visual prior knowledge
(e.g. photography-based approach [17]) is another important
problem to solve. Additionally, we also need to explore if
our method can be applied to other data, such as contours
derived by edge detection in colored paintings or photos.
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